Dimension counts for limit linear series on curves not of compact type

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimension Counts for Limit Linear Series on Curves Not of Compact Type

We first prove a generalized Brill-Noether theorem for linear series with prescribed multivanishing sequences on smooth curves. We then apply this theorem to prove that spaces of limit linear series have the expected dimension for a certain class of curves not of compact type, whenever the gluing conditions in the definition of limit linear series impose the maximal codimension. Finally, we inv...

متن کامل

Linear Series on Semistable Curves

We study h 0 (X, L) for line bundles L on a semistable curve X of genus g, parametrized by the compactified Picard scheme. The theorem of Riemann is shown to hold. The theorem of Clifford is shown to hold in the following cases: X has two components; X is any semistable curve and d = 0 or d = 2g − 2; X is stable, free from separating nodes, and d ≤ 4. These results are shown to be sharp. Applic...

متن کامل

Limit linear series

Preface I hope that this book is simultaneously accessible on two different levels: first, most of the ideas should be comprehensible to the reader who has studied varieties but not schemes; and second, formal definitions and proofs are provided throughout for the reader who is familiar with schemes. On a third level, because it is not my intention to attempt to treat the moduli space of curves...

متن کامل

New Perspectives on Limit Linear Series

Maps to projective spaces correspond to linear series. To better study linear series on smooth curves, Eisenbud and Harris developed their theory of limit linear series for reducible curves of “compact type.” We discuss a new equivalent description of classical Eisenbud-Harris limit linear series which generalizes to the higher-rank case, agreeing with the earlier construction of Teixidor i Big...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2016

ISSN: 0025-5874,1432-1823

DOI: 10.1007/s00209-016-1646-5